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Abstract— The technological advancements over the years towards the improvements of the processor were astonishing, 
however memory developments weren’t as much.  Memory allocation is a technique used to improve the memory 
assignment of programs in memory. The process of memory allocation is to assign either partial or complete portion of 
memory to the execution of processes. In this paper, we focus towards the concept of dynamic memory allocation in cloud 
computing environments where we present a cloud environment with a global memory and a stream of requests that 
requires to be assigned part of the global memory for a period of time. Different memory allocation schemes such as first-fit 
and best-fit have solved this problem. The proposed allocation scheme of this paper uses variant of sequential fit to produce 
slightly better results depending on the used environment. In this scheme, portals are proposed in order navigate and 
reserve memory. In order to demonstrate the efficiency of the proposed allocation scheme, we have simulated a pre-defined 
memory environment where we compared the performance of our technique with other techniques mentioned in the 
literature. 
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I. INTRODUCTION 
 

Cloud computing has been a topic for interest for quite some time. Forrester Research [14] mentioned that the cloud 
computing market would grow up to 241$ billion by 2020 compared to 2010 where it was only 40$ billion. As an emerging 
topic of interest, cloud services are becoming the primary source of computing power for business and personal applications. 
Cloud computing operates by providing for their users a shared pool of servers in a secure data center where they offer 
subscription based and easily attainable computation in a scalable manner. Several cloud service models were proposed based 
on the generality of these resources: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service 
(SaaS) [15]. A new cloud service model was recently introduced [16] named Resource as a Service (RaaS). The RaaS model 
operates by renting resources separately instead of a fixed bundle. This results in transforming memory into an important 
billed resource. Thus stimulating a new interest in memory allocation as part of memory management.  

 

Memory allocation is a technique in memory management to efficiently assign memory to different computer process and 
programs. Memory allocation is divided into two types: Static and Dynamic. Static memory allocation operates at compile 
time where all memory assignments are done, however dynamic memory allocation functions at run time where memory 
assignments have to be done on the fly. Since dynamic memory allocation operates at run time, the crucial aspect of any 
dynamic memory allocation is speed because a slow allocator would become a major bottleneck. Moreover, as the memory is 
limited is space, other the goal is not waste any memory space.  

 

There are three basic categories for any memory allocation algorithm: sequential fits, segregated free and buddy system [17, 
18, 19]. The mechanism of sequential fits is to keep track of free memories (holes) as a linked list that can be searched later 
sequentially. There are different techniques to search the list such as: random, first-fit, or best-fit.  The random technique 
operates by random selecting a hole that fits the requesters criteria. While first fit functions by selecting the first hole in the 
list that fits the criteria. On the other hand, best fit works by selecting the best hole that fits the given criteria. Fig. 1 illustrates 
the random, first fit and best fit strategies given that the requestors memory criteria is 10 GB. 

 

 
Fig. 1: Memory snapshot given that a users requesting 10GB [6] 
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In this paper, we introduce a new memory allocation technique that is based on the concept of sequential fits. The proposed 
solution exploits the concepts of portals to traverse memory in different manner. For simplicity we will assume that there 
exists a single portal in memory that can group different location of memory together. The scheme operates in a fashion 
similar to first fit until some user requesting memory gets blocked near a portal. In this case, it checks if it is possible to 
switch the portal into ON/OFF and check if it is possible to allow the user to reserve the memory space. We illustrate the 
resourcefulness of our approach by comparing it with other well versed approaches such as first fit, best fit and random 
memory allocation techniques. The rest of this paper is organized as follows: Section II presents the literature review of this 
field. The problem definition and analysis of the problem is defined in section III. In section IV we introduce our proposed 
technique where it is implemented and shown in section V. Section VI presents our results. We conclude in section VII with 
future work. 

 

II. LITERATURE REVIEW 
 

Memory allocation is a major topic of interest in the field of improving memory performance. Several works like Albers et 
al. [1] analyzed the first fit technique on the classical bin-packing problem where objects of different volumes must be placed 
inside fixed size containers while minimizing the number of bins used. They generalized the multi-dimensional Markov chain 
to demonstrate that the bin-packing algorithm is stable under pre-defined conditions. They created a tight bound to solve this 
NP-Complete problem. While Aron et al. in [2] proposed a new technique called cluster reserves to improve the performance 
of a webserver. They have evaluated a prototype implementation of their idea. Their attained results yield an increase in 
higher resource utilization and performance than the approaches used at the time. 

 

In [3], Shore et al. published a through comparison on the effects of first-fit and best-fit memory allocation algorithms. 
Through simulation, the data obtained relative to the performance of the algorithms was acceptable. Their results 
demonstrated that with a small distribution both algorithms perform similarly while using an exponential distribution the first-
fit algorithm outperformed best fit. They concluded that when the variation of the request distribution is greater than unity, 
first-fit would outperform best fit. 

 

Stillwell et al. in [4] have proposed several algorithms to solve the resource allocation problem. They believe that the best 
approach to solve the problem is to perform a binary search over the yield. Among the different algorithms suggested, the 
Chose Pack vector- packing algorithm is the best. The disadvantage of the paper is that the workloads for which the number 
of instances per service do not change throughout time. 

 

Costea et al. proposed an alternative resource allocator other than the generic allocation algorithms such as best-fit or first-
fit for the miriaPOD platform in [5]. They claim that their allocator exploits the memory sharing features of the virtualization 
backend. They implemented a simulator that determines the performance of their proposed allocator. However, the proposed 
allocator is custom made for the miriaPOD platform. 

 

In [6], Al-Yatama et al. proposed a novel technique that segregates the memory holes according to the size of the hole. 
After running their algorithm, they claim that their new algorithm is faster than traditional used techniques, it was also found 
that the proposed technique was distributing the data to the memory more fairly. Consequently, Younis et al. in [7] proposed a 
generic algorithm that handles segregated list of different size holes. They claim that their simulation results improved the 
performance of their system. 

 

Lioa et al. have proposed another novel technique in [8]. The technique focuses on the energy consumption, which uses 
two heuristic algorithms that use Xan heaps. The simulation presented in the paper yielded 50% more energy efficiency than 
the standard used algorithms. 

 

Elias et al. in [9] presented six different memory-allocating algorithms where they have compared them with each other in 
terms of execution time and memory usage. They claim that the Ptmallocv2 algorithm was superior in terms of time while the 
Ptmallocv3 algorithm was better in terms of memory usage. 

 

In [10], Husagic-Selman et al. proposed a method that uses fuzzy logic in order to quickly handle real time memory 
allocation. Their simulated results yield a slight increase in speed by using their methodology. However, they claim that by 
changing and improving the fizzy pattern, the fizzy allocator is to be improved leading to better results. 

 

Chung et al. in [11] proposed a new dynamic memory allocation scheme called Lazy-Fit. The scheme operates by using 
pointer increments as the main allocation method and conventional schemes such as First-Fit and Best-Fit are used as a 
backup. They claim that their proposed scheme if implemented properly could be faster than conventional schemes. However, 
the disadvantage of their scheme is the large increase of fragmentation that could be inadequate.  

 

In [12], Hasan et al. performed a study of the different implementation of the Best-Fit memory allocator technique. In their 
study, they noticed that a 33% increase of performance is achieved if the algorithm is implemented by using the Doug Lea 
method. However, they should have included the First-Fit technique in their study to obtain even better results. 

 

Orna et al. in [13], have proposed “Ginseng” a market-driven memory allocator. Their scheme inspires clients to bid their 
true memory needs upon actually requiring it.  
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By continuously gathering clients’ bids, they claim that Ginseng finds an efficient memory allocator, re-allocates physical 
memory and present it to the clients. They state that an improvement of 83-100% of the optimum in aggregated client 
satisfaction is achieved when compared with other state of the art approaches in cloud memory allocation. Similar to the work 
done in [6], we have proposed a new memory allocation scheme explained in details in the following sections.  

 
 

III. PROBLEM DEFINITION & OBJECTIVES 
 

To improve the performance of computer programs, the physical memory should be utilized efficiently. Memory allocation 
is a technique used to further utilize the physical memory. In order to improve the overall performance of computer systems, a 
suitable memory allocation algorithm should be used.  

 

Given a physical memory of size X and a stream of requests of different instance types following a pre-defined distribution 
desiring to utilize the given memory. A memory allocation scheme will assign each request to a location in memory to utilize 
for a given period of time T. In order to improve the performance, the number of requests unable to utilize the memory given 
that the memory is full, must be minimized. 

 

 In brief, we do the following:  
 

 Describe the new memory allocation scheme that improves the performance and postpone the life of the physical 
memory by reducing the fragmentation occurring in the memory  

 Implement and simulate the proposed scheme 
 Compare the proposed scheme with other well-known memory allocation schemes such as First-Fit and Best-Fit 

 

Further, we define the work environment, and determine the representation of data.   
 

A. Defining Environment 
 

  We assume a physical memory consisting of M memory units and I different instances, each having different memory 
requirements. 

 

∀	݅ ∈ ௜݉	∃	ܫ ≪  ܯ
 
We will assume the smallest memory unit is u = 0.5 GiB. The amazon elastic cloud instances [20] t2.small and r3.8xlarge 

are equal to 2 and 244 GiB respectively. Thus the t2.small and r3.8xlarge  will require 4  and 488 memory units respectively. 
We will define the different instances I according to the amazon instances. Table 1 shows the different amazon instances and 
their corresponding memory units. 

TABLE 1 
                                            AMAZON CLOUD INSTANCES 

Name Memory Size (GiB) Memory Units (u) 
t2.micro 1 2 
t2.small 2 4 

t2.medium 4 8 
t2.large 8 16 

m4.xlarge 16 32 
m4.2xlarge 32 64 
m4.4xlarge 64 128 
m4.10xlarge 160 320 
r3.8xlarge 244 488 

 
 

We will assume that each instance will arrive to our system following the Poisson distribution with λ୧ requests per unit time. 
The normalized arrival rate for an instance can be obtained using the following equation:  

λనഥ = 	
λ୧
∑ λ୧୍

 

The holding time of requests in the system is assumed to follow the exponential distribution with a mean of 1 unit of time 
(e.g. 2 hours). Additionally, we assume that blocked requests will not enter the system again which implies that request-retrial 
rate is insignificant. We define the lost revenue in $ to be the sum of all blocking probability of requests multiplied by the 
requests demand for all ݅ ∈   ,Then .ܫ

Lost	Revenue = 	෍D୧

୍

୧∈୍

	x	b୧			$ 

and the normalized lost revenue is 

Normalized	Lost	Revenue = 	
∑ D୧
୍
୧∈୍ 	x	b୧			
∑ D୧
୍
୧∈୍

			% 
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௜ܦ ௜ is given by the following demand functionܦ = ݉௜ ௜ߣ	ݔ	 	where ݉௜ is the request memory unit size and ߣ௜ is the arrival 
rate for that request type. The blocking probability ܾ௜ is the probability that a specific request type will be blocked from the 
system.  

 

IV. DESIGN METHODOLOGY 
The scheme is tested under different environments such that the arriving requests could be in uniform, exponential or bell 

distribution. The lost revenue is then calculated for each environment and compared with different memory allocation 
strategies in a graph.   

 

Portal is used in the scheme to navigate the memory. Portal, simply, is different arrangement of the memory. Fig. 3 below 
shows how portals function in the memory. 

 
 1 

 

1 
Portal Entrance 2 2 
 3 4 
Portal Exit 4 5 
 5 3 

 Fig.3: Memory Snapshot of the portal closed and opened. The memory on the left shows the memory arrangement when the portal is closed while the 
memory on the right shows the memory arrangement when it is open 

We notice from Fig. 3 that the memory in both cases is sequential listed. The algorithm exploits this feature by assigning 
users memory space in both situations if it is possible. The overall architectural design of this algorithm can be implemented 
by adding one extra bit in the hardware design. The underlying algorithm behind this technique is based on the first fit 
algorithm mentioned previously.  

 
A. Algorithm Functionality 
 

The algorithm functions initially by receiving a request to reserve a specific amount of memory. Next, it acquires the 
memory in a sequential linked list based on the state of the portal. Then , by using the underlying methodology, it navigates 
the memory and attempts to assign the user a part of that memory while saving the state of the portal in order to release it later 
on. If the attempt fails, the algorithm will check if it is possible to switch the portal state by checking surrounding memory 
locations around the portal. Assuming memory is free around the portal, the algorithm will switch the state of the portal and 
acquires the memory in a sequential linked list again but with the different state and attempts to assign the user some memory. 
Otherwise, the user is blocked until some memory is released. Fig. 4 shows a flow chart of the methodology.   

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 4 Architecture Overview of the Proposed Memory Allocation Algorithm 
 

B.  Portals Placement 
 

The key issue in the algorithm is where to place the portals in the memory? There are many ways to place the entrance and 
exit portals in the memory. We argue that in order to effectively benefit from the portals, certain conditions must be met. First 
condition is that the entrance portal must be place before the exit portal in order reassign parts of the memory correctly. This 
idea rises from the concept of a wormhole. The other condition is that the distance between portals have to be equal. 
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 Since we are assuming one portal to be used here, we believe that placing the entrance portal after 25% from the beginning 
of the memory and placing the exit portal 25% before the end of the memory will give us optimal results.  Fig. 5 shows an 
example of where the entrance and exit portals should be placed in memory given one or two portals. Since we are using one 
portal, we will use the memory arrangement shown in Fig. 5 Part A. 

 
 

25% 
 20%  20%  20% 

 Entrance 1  Entrance 1  Entrance 1 

Entrance  20%  20%  20% 

50% 

 Entrance 2  Exit 1  Entrance 2 

 20%  20%  20% 

 Exit 1  Entrance 2  Exit 2 

Exit  20%  20%  20% 

25% 
 Exit 2  Exit 2  Exit 1 

 20%  20%  20% 

A  B  C  D 

Fig. 5 Shows different arrangement of the memory with different portal assignments. Part A shows only one portal in use while Parts B, C, D shows the 
possible portals placement in memory. 

 

V. IMPLEMENTATION 
 

In order to simulate the proposed scheme,  Java Object-Oriented Programming Language was used to write a custom 
simulator. The generated data by the simulator was fed into Microsoft Excel to represent and plot the data in graphical shape.  

We have assumed that the arrival of requests to our system in Section 3 to be followed through the Poisson distribution 
with the arrival rate lambda λ. Similarly, we stated that the dwell time of these requests follow the exponential distribution. 
This is an example of the M/M/1 system in queuing theory. To implement this, we exploit the special case of the Poisson 
distribution where the inter arrival time is memory less therefore following an exponential distribution. Now using only the 
exponential distribution; we can simulate the arrivals of requests by using the inter-arrival time and dwell time of those 
requests. In order to simulate this system with two variables, we have assumed that one of the variable “the dwell time of 
requests” to be 1-time unit under different arrivals rates. Fig. 6 shows the flow chart of the system. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Overall Flow Chart of the System 
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VI. RESULTS 
The proposed memory allocation technique was simulated with the system previously discussed under three different 

environments. The first environment assumes a cloud where users select the different instances uniformly. Fig. 7 illustrates 
that our proposed scheme under this environment performed equally with the First-Fit and Best-Fit schemes and better than 
the Random scheme. The second environment under-take a scenario where cloud services are selected exponentially. This 
means that the lower instances such as the t2.micro instance has a higher chance than of being selected than the r3.8xlarge 
instance. The results shown in Fig. 8 shows that the proposed portal scheme performed slightly better than the other 
mentioned schemes. The final environment was tested on a cloud where users have a higher chance of selecting instances 
such as m4.xlarge & m4.2xlarge instead of t2.micro & r3.8xlarge thus leading to a normally distributed cloud. Fig. 9 shows 
that our proposed scheme performs slightly better than the other mentioned schemes. Using students t-distribution, we are 95% 
confidence of our results.     

 
Fig. 7: Amazon Instances are selected based on the Uniformly Distribution 

 

 
Fig. 8 Amazon Instances are selected based on the Exponential Distribution 
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        Fig. 9 Amazon Instances are selected based on the Normal Distribution (Bell-Shaped) 

 
VII. CONCLUSION & FUTURE WORK 

 
In this paper, we have proposed a new memory allocation algorithm in order to improve the performance of computer 

systems in cloud services. Additionally, we have simulated our proposed methodology and obtained some promising results 
compared with other widespread scheme. Future works will explore the potentials of adding a multiple portals and the 
different effects on the system, other works will explore a more improved version of the proposed scheme where the 
algorithm have some kind of intelligence in order to differentiate between different tasks. 
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